Global attractors of the degenerate fractional Kirchhoff wave equation with structural damping or strong damping
نویسندگان
چکیده
Abstract This article deals with the degenerate fractional Kirchhoff wave equation structural damping or strong damping. The well-posedness and existence of global attractor in natural energy space by virtue Faedo-Galerkin method estimates are proved. It is worth mentioning that results this cover case possible degeneration (or even negativity) stiffness coefficient. Moreover, under further suitable assumptions, fractal dimension shown to be infinite using Z 2 {{\mathbb{Z}}}_{2} index theory.
منابع مشابه
Smooth attractors for the quintic wave equations with fractional damping
Dissipative wave equations with critical quintic nonlinearity and damping term involving the fractional Laplacian are considered. The additional regularity of energy solutions is established by constructing the new Lyapunov-type functional and based on this, the global well-posedness and dissipativity of the energy solutions as well as the existence of a smooth global and exponential attractors...
متن کاملOn the Controllability of a Wave Equation with Structural Damping
We study the boundary controllability properties of a wave equation with structural damping ytt− yxx− 2ytxx = 0, y(0, t) = 0, y(1, t) = h(t) where 2 is a strictly positive parameter depending on the damping strength. We prove that this equation is not spectrally controllable and that the approximate controllability depends on the functional space in which the initial value Cauchy problem is stu...
متن کاملA ug 2 01 4 Kirchhoff equations with strong damping
We consider Kirchhoff equations with strong damping, namely with a friction term which depends on a power of the “elastic” operator. We address local and global existence of solutions in two different regimes depending on the exponent in the friction term. When the exponent is greater than 1/2, the dissipation prevails, and we obtain global existence in the energy space assuming only degenerate...
متن کاملDamping for the elastic wave equation
Résumé: Le but de ce projet est une investigation des techniques d’amortissement pour l’équation d’onde. Cette étude est intéressante tant du point de vue de la physique et que de l’analyse numérique. En effet l’amortissement apparâıt fréquemment dans les systèmes avec friction. Du point de vue mathématique, l’amortissement donne une meilleure régularité de l’équation élastique qui est importan...
متن کاملLimiting behavior of global attractors for singularly perturbed beam equations with strong damping
The limiting behavior of global attractors Aε for singularly perturbed beam equations ε ∂u ∂t2 + εδ ∂u ∂t + A ∂u ∂t + αAu+ g(‖u‖ 1/4)A u = 0 is investigated. It is shown that for any neighborhood U of A0 the set Aε is included in U for ε small.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Nonlinear Analysis
سال: 2022
ISSN: ['2191-950X', '2191-9496']
DOI: https://doi.org/10.1515/anona-2022-0226